Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Dense and Sparse Subgraphs of Weakly Closed Graphs (2007.05630v3)

Published 10 Jul 2020 in cs.DM and math.CO

Abstract: A graph $G$ is weakly $\gamma$-closed if every induced subgraph of $G$ contains one vertex $v$ such that for each non-neighbor $u$ of $v$ it holds that $|N(u)\cap N(v)|<\gamma$. The weak closure $\gamma(G)$ of a graph, recently introduced by Fox et al. [SIAM J. Comp. 2020], is the smallest number such that $G$ is weakly $\gamma$-closed. This graph parameter is never larger than the degeneracy (plus one) and can be significantly smaller. Extending the work of Fox et al. [SIAM J. Comp. 2020] on clique enumeration, we show that several problems related to finding dense subgraphs, such as the enumeration of bicliques and $s$-plexes, are fixed-parameter tractable with respect to $\gamma(G)$. Moreover, we show that the problem of determining whether a weakly $\gamma$-closed graph $G$ has a subgraph on at least $k$ vertices that belongs to a graph class $\mathcal{G}$ which is closed under taking subgraphs admits a kernel with at most $\gamma k2$ vertices. Finally, we provide fixed-parameter algorithms for Independent Dominating Set and Dominating Clique when parameterized by $\gamma+k$ where $k$ is the solution size.

Citations (11)

Summary

We haven't generated a summary for this paper yet.