Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks (2007.05134v1)

Published 10 Jul 2020 in cs.LG and stat.ML

Abstract: Accurate estimation of predictive uncertainty in modern neural networks is critical to achieve well calibrated predictions and detect out-of-distribution (OOD) inputs. The most promising approaches have been predominantly focused on improving model uncertainty (e.g. deep ensembles and Bayesian neural networks) and post-processing techniques for OOD detection (e.g. ODIN and Mahalanobis distance). However, there has been relatively little investigation into how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates, and the dominant method, softmax cross-entropy, results in misleadingly high confidences on OOD data and under covariate shift. We investigate alternative ways of formulating probabilities using (1) a one-vs-all formulation to capture the notion of "none of the above", and (2) a distance-based logit representation to encode uncertainty as a function of distance to the training manifold. We show that one-vs-all formulations can improve calibration on image classification tasks, while matching the predictive performance of softmax without incurring any additional training or test-time complexity.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: