Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SGQuant: Squeezing the Last Bit on Graph Neural Networks with Specialized Quantization (2007.05100v2)

Published 9 Jul 2020 in cs.LG and stat.ML

Abstract: With the increasing popularity of graph-based learning, Graph Neural Networks (GNNs) win lots of attention from the research and industry field because of their high accuracy. However, existing GNNs suffer from high memory footprints (e.g., node embedding features). This high memory footprint hurdles the potential applications towards memory-constrained devices, such as the widely-deployed IoT devices. To this end, we propose a specialized GNN quantization scheme, SGQuant, to systematically reduce the GNN memory consumption. Specifically, we first propose a GNN-tailored quantization algorithm design and a GNN quantization fine-tuning scheme to reduce memory consumption while maintaining accuracy. Then, we investigate the multi-granularity quantization strategy that operates at different levels (components, graph topology, and layers) of GNN computation. Moreover, we offer an automatic bit-selecting (ABS) to pinpoint the most appropriate quantization bits for the above multi-granularity quantizations. Intensive experiments show that SGQuant can effectively reduce the memory footprint from 4.25x to 31.9x compared with the original full-precision GNNs while limiting the accuracy drop to 0.4% on average.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube