Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Behavioral analysis of support vector machine classifier with Gaussian kernel and imbalanced data (2007.05042v1)

Published 9 Jul 2020 in cs.LG and stat.ML

Abstract: The parameters of support vector machines (SVMs) such as the penalty parameter and the kernel parameters have a great impact on the classification accuracy and the complexity of the SVM model. Therefore, the model selection in SVM involves the tuning of these parameters. However, these parameters are usually tuned and used as a black box, without understanding the mathematical background or internal details. In this paper, the behavior of the SVM classification model is analyzed when these parameters take different values with balanced and imbalanced data. This analysis including visualization, mathematical and geometrical interpretations and illustrative numerical examples with the aim of providing the basics of the Gaussian and linear kernel functions with SVM. From this analysis, we proposed a novel search algorithm. In this algorithm, we search for the optimal SVM parameters into two one-dimensional spaces instead of searching into one two-dimensional space. This reduces the computational time significantly. Moreover, in our algorithm, from the analysis of the data, the range of kernel function can be expected. This also reduces the search space and hence reduces the required computational time. Different experiments were conducted to evaluate our search algorithm using different balanced and imbalanced datasets. The results demonstrated how the proposed strategy is fast and effective than other searching strategies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.