Multinomial Logit Bandit with Low Switching Cost (2007.04876v1)
Abstract: We study multinomial logit bandit with limited adaptivity, where the algorithms change their exploration actions as infrequently as possible when achieving almost optimal minimax regret. We propose two measures of adaptivity: the assortment switching cost and the more fine-grained item switching cost. We present an anytime algorithm (AT-DUCB) with $O(N \log T)$ assortment switches, almost matching the lower bound $\Omega(\frac{N \log T}{ \log \log T})$. In the fixed-horizon setting, our algorithm FH-DUCB incurs $O(N \log \log T)$ assortment switches, matching the asymptotic lower bound. We also present the ESUCB algorithm with item switching cost $O(N \log2 T)$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.