Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Greedy Transition-Based Dependency Parsing with Discrete and Continuous Supertag Features (2007.04686v1)

Published 9 Jul 2020 in cs.CL

Abstract: We study the effect of rich supertag features in greedy transition-based dependency parsing. While previous studies have shown that sparse boolean features representing the 1-best supertag of a word can improve parsing accuracy, we show that we can get further improvements by adding a continuous vector representation of the entire supertag distribution for a word. In this way, we achieve the best results for greedy transition-based parsing with supertag features with $88.6\%$ LAS and $90.9\%$ UASon the English Penn Treebank converted to Stanford Dependencies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.