Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end Learned Image Compression with Fixed Point Weight Quantization (2007.04684v1)

Published 9 Jul 2020 in eess.IV

Abstract: Learned image compression (LIC) has reached the traditional hand-crafted methods such as JPEG2000 and BPG in terms of the coding gain. However, the large model size of the network prohibits the usage of LIC on resource-limited embedded systems. This paper presents a LIC with 8-bit fixed-point weights. First, we quantize the weights in groups and propose a non-linear memory-free codebook. Second, we explore the optimal grouping and quantization scheme. Finally, we develop a novel weight clipping fine tuning scheme. Experimental results illustrate that the coding loss caused by the quantization is small, while around 75% model size can be reduced compared with the 32-bit floating-point anchor. As far as we know, this is the first work to explore and evaluate the LIC fully with fixed-point weights, and our proposed quantized LIC is able to outperform BPG in terms of MS-SSIM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Heming Sun (39 papers)
  2. Zhengxue Cheng (29 papers)
  3. Masaru Takeuchi (9 papers)
  4. Jiro Katto (36 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.