Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

An Optimal Uniform Concentration Inequality for Discrete Entropies on Finite Alphabets in the High-dimensional Setting (2007.04547v3)

Published 9 Jul 2020 in math.PR, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We prove an exponential decay concentration inequality to bound the tail probability of the difference between the log-likelihood of discrete random variables on a finite alphabet and the negative entropy. The concentration bound we derive holds uniformly over all parameter values. The new result improves the convergence rate in an earlier result of Zhao (2020), from $(K2\log K)/n=o(1)$ to $ (\log K)2/n=o(1)$, where $n$ is the sample size and $K$ is the size of the alphabet. We further prove that the rate $(\log K)2/n=o(1)$ is optimal. The results are extended to misspecified log-likelihoods for grouped random variables. We give applications of the new result in information theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.