Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Optimal Uniform Concentration Inequality for Discrete Entropies on Finite Alphabets in the High-dimensional Setting (2007.04547v3)

Published 9 Jul 2020 in math.PR, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We prove an exponential decay concentration inequality to bound the tail probability of the difference between the log-likelihood of discrete random variables on a finite alphabet and the negative entropy. The concentration bound we derive holds uniformly over all parameter values. The new result improves the convergence rate in an earlier result of Zhao (2020), from $(K2\log K)/n=o(1)$ to $ (\log K)2/n=o(1)$, where $n$ is the sample size and $K$ is the size of the alphabet. We further prove that the rate $(\log K)2/n=o(1)$ is optimal. The results are extended to misspecified log-likelihoods for grouped random variables. We give applications of the new result in information theory.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)