Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Regret for Control of Time-Varying Dynamics (2007.04393v3)

Published 8 Jul 2020 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of online control of systems with time-varying linear dynamics. This is a general formulation that is motivated by the use of local linearization in control of nonlinear dynamical systems. To state meaningful guarantees over changing environments, we introduce the metric of {\it adaptive regret} to the field of control. This metric, originally studied in online learning, measures performance in terms of regret against the best policy in hindsight on {\it any interval in time}, and thus captures the adaptation of the controller to changing dynamics. Our main contribution is a novel efficient meta-algorithm: it converts a controller with sublinear regret bounds into one with sublinear {\it adaptive regret} bounds in the setting of time-varying linear dynamical systems. The main technical innovation is the first adaptive regret bound for the more general framework of online convex optimization with memory. Furthermore, we give a lower bound showing that our attained adaptive regret bound is nearly tight for this general framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Paula Gradu (12 papers)
  2. Elad Hazan (106 papers)
  3. Edgar Minasyan (6 papers)
Citations (46)

Summary

We haven't generated a summary for this paper yet.