Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Regret for Control of Time-Varying Dynamics (2007.04393v3)

Published 8 Jul 2020 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of online control of systems with time-varying linear dynamics. This is a general formulation that is motivated by the use of local linearization in control of nonlinear dynamical systems. To state meaningful guarantees over changing environments, we introduce the metric of {\it adaptive regret} to the field of control. This metric, originally studied in online learning, measures performance in terms of regret against the best policy in hindsight on {\it any interval in time}, and thus captures the adaptation of the controller to changing dynamics. Our main contribution is a novel efficient meta-algorithm: it converts a controller with sublinear regret bounds into one with sublinear {\it adaptive regret} bounds in the setting of time-varying linear dynamical systems. The main technical innovation is the first adaptive regret bound for the more general framework of online convex optimization with memory. Furthermore, we give a lower bound showing that our attained adaptive regret bound is nearly tight for this general framework.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.