Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Temporal aggregation of audio-visual modalities for emotion recognition (2007.04364v1)

Published 8 Jul 2020 in cs.CV and cs.AI

Abstract: Emotion recognition has a pivotal role in affective computing and in human-computer interaction. The current technological developments lead to increased possibilities of collecting data about the emotional state of a person. In general, human perception regarding the emotion transmitted by a subject is based on vocal and visual information collected in the first seconds of interaction with the subject. As a consequence, the integration of verbal (i.e., speech) and non-verbal (i.e., image) information seems to be the preferred choice in most of the current approaches towards emotion recognition. In this paper, we propose a multimodal fusion technique for emotion recognition based on combining audio-visual modalities from a temporal window with different temporal offsets for each modality. We show that our proposed method outperforms other methods from the literature and human accuracy rating. The experiments are conducted over the open-access multimodal dataset CREMA-D.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.