Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Lower Bounds for Truthful Scheduling (2007.04362v2)

Published 8 Jul 2020 in cs.GT

Abstract: The problem of scheduling unrelated machines by a truthful mechanism to minimize the makespan was introduced in the seminal "Algorithmic Mechanism Design" paper by Nisan and Ronen. Nisan and Ronen showed that there is a truthful mechanism that provides an approximation ratio of $\min(m,n)$, where $n$ is the number of machines and $m$ is the number of jobs. They also proved that no truthful mechanism can provide an approximation ratio better than $2$. Since then, the lower bound was improved to $1 +\sqrt 2 \approx 2.41$ by Christodoulou, Kotsoupias, and Vidali, and then to $1+\phi\approx 2.618$ by Kotsoupias and Vidali. Very recently, the lower bound was improved to $2.755$ by Giannakopoulos, Hammerl, and Pocas. In this paper we further improve the bound to $3-\delta$, for every constant $\delta>0$. Note that a gap between the upper bound and the lower bounds exists even when the number of machines and jobs is very small. In particular, the known $1+\sqrt{2}$ lower bound requires at least $3$ machines and $5$ jobs. In contrast, we show a lower bound of $2.2055$ that uses only $3$ machines and $3$ jobs and a lower bound of $1+\sqrt 2$ that uses only $3$ machines and $4$ jobs. For the case of two machines and two jobs we show a lower bound of $2$. Similar bounds for two machines and two jobs were known before but only via complex proofs that characterized all truthful mechanisms that provide a finite approximation ratio in this setting, whereas our new proof uses a simple and direct approach.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube