Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Segmentation Approach for Coreference Resolution Task (2007.04301v1)

Published 30 Jun 2020 in cs.CL

Abstract: In coreference resolution, it is important to consider all members of a coreference cluster and decide about all of them at once. This technique can help to avoid losing precision and also in finding long-distance relations. The presented paper is a report of an ongoing study on an idea which proposes a new approach for coreference resolution which can resolve all coreference mentions to a given mention in the document in one pass. This has been accomplished by defining an embedding method for the position of all members of a coreference cluster in a document and resolving all of them for a given mention. In the proposed method, the BERT model has been used for encoding the documents and a head network designed to capture the relations between the embedded tokens. These are then converted to the proposed span position embedding matrix which embeds the position of all coreference mentions in the document. We tested this idea on CoNLL 2012 dataset and although the preliminary results from this method do not quite meet the state-of-the-art results, they are promising and they can capture features like long-distance relations better than the other approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)