Papers
Topics
Authors
Recent
2000 character limit reached

Linear-Time Algorithms for Adaptive Submodular Maximization (2007.04214v1)

Published 8 Jul 2020 in cs.LG and stat.ML

Abstract: In this paper, we develop fast algorithms for two stochastic submodular maximization problems. We start with the well-studied adaptive submodular maximization problem subject to a cardinality constraint. We develop the first linear-time algorithm which achieves a $(1-1/e-\epsilon)$ approximation ratio. Notably, the time complexity of our algorithm is $O(n\log\frac{1}{\epsilon})$ (number of function evaluations) which is independent of the cardinality constraint, where $n$ is the size of the ground set. Then we introduce the concept of fully adaptive submodularity, and develop a linear-time algorithm for maximizing a fully adaptive submoudular function subject to a partition matroid constraint. We show that our algorithm achieves a $\frac{1-1/e-\epsilon}{4-2/e-2\epsilon}$ approximation ratio using only $O(n\log\frac{1}{\epsilon})$ number of function evaluations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.