Papers
Topics
Authors
Recent
2000 character limit reached

Diverse Ensembles Improve Calibration (2007.04206v1)

Published 8 Jul 2020 in cs.LG and stat.ML

Abstract: Modern deep neural networks can produce badly calibrated predictions, especially when train and test distributions are mismatched. Training an ensemble of models and averaging their predictions can help alleviate these issues. We propose a simple technique to improve calibration, using a different data augmentation for each ensemble member. We additionally use the idea of `mixing' un-augmented and augmented inputs to improve calibration when test and training distributions are the same. These simple techniques improve calibration and accuracy over strong baselines on the CIFAR10 and CIFAR100 benchmarks, and out-of-domain data from their corrupted versions.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.