Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Double Prioritized State Recycled Experience Replay (2007.03961v3)

Published 8 Jul 2020 in cs.LG and stat.ML

Abstract: Experience replay enables online reinforcement learning agents to store and reuse the previous experiences of interacting with the environment. In the original method, the experiences are sampled and replayed uniformly at random. A prior work called prioritized experience replay was developed where experiences are prioritized, so as to replay experiences seeming to be more important more frequently. In this paper, we develop a method called double-prioritized state-recycled (DPSR) experience replay, prioritizing the experiences in both training stage and storing stage, as well as replacing the experiences in the memory with state recycling to make the best of experiences that seem to have low priorities temporarily. We used this method in Deep Q-Networks (DQN), and achieved a state-of-the-art result, outperforming the original method and prioritized experience replay on many Atari games.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.