Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-Resolution Beta-Divergence NMF for Blind Spectral Unmixing (2007.03893v3)

Published 8 Jul 2020 in eess.SP, cs.SD, eess.AS, and eess.IV

Abstract: Many datasets are obtained as a resolution trade-off between two adversarial dimensions; for example between the frequency and the temporal resolutions for the spectrogram of an audio signal, and between the number of wavelengths and the spatial resolution for a hyper/multi-spectral image. To perform blind source separation using observations with different resolutions, a standard approach is to use coupled nonnegative matrix factorizations (NMF). Most previous works have focused on the least squares error measure, which is the $\beta$-divergence for $\beta = 2$. In this paper, we formulate this multi-resolution NMF problem for any $\beta$-divergence, and propose an algorithm based on multiplicative updates (MU). We show on numerical experiments that the MU are able to obtain high resolutions in both dimensions on two applications: (1) blind unmixing of audio spectrograms: to the best of our knowledge, this is the first time a coupled NMF model is used in this context, and (2) the fusion of hyperspectral and multispectral images: we show that the MU compete favorable with state-of-the-art algorithms in particular in the presence of non-Gaussian noise.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.