Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Adversarial Examples More Transferable and Indistinguishable (2007.03838v2)

Published 8 Jul 2020 in cs.CV and cs.LG

Abstract: Fast gradient sign attack series are popular methods that are used to generate adversarial examples. However, most of the approaches based on fast gradient sign attack series cannot balance the indistinguishability and transferability due to the limitations of the basic sign structure. To address this problem, we propose a method, called Adam Iterative Fast Gradient Tanh Method (AI-FGTM), to generate indistinguishable adversarial examples with high transferability. Besides, smaller kernels and dynamic step size are also applied to generate adversarial examples for further increasing the attack success rates. Extensive experiments on an ImageNet-compatible dataset show that our method generates more indistinguishable adversarial examples and achieves higher attack success rates without extra running time and resource. Our best transfer-based attack NI-TI-DI-AITM can fool six classic defense models with an average success rate of 89.3% and three advanced defense models with an average success rate of 82.7%, which are higher than the state-of-the-art gradient-based attacks. Additionally, our method can also reduce nearly 20% mean perturbation. We expect that our method will serve as a new baseline for generating adversarial examples with better transferability and indistinguishability.

Citations (28)

Summary

We haven't generated a summary for this paper yet.