Emergent Mind

Fast Training of Deep Neural Networks Robust to Adversarial Perturbations

(2007.03832)
Published Jul 8, 2020 in cs.LG and stat.ML

Abstract

Deep neural networks are capable of training fast and generalizing well within many domains. Despite their promising performance, deep networks have shown sensitivities to perturbations of their inputs (e.g., adversarial examples) and their learned feature representations are often difficult to interpret, raising concerns about their true capability and trustworthiness. Recent work in adversarial training, a form of robust optimization in which the model is optimized against adversarial examples, demonstrates the ability to improve performance sensitivities to perturbations and yield feature representations that are more interpretable. Adversarial training, however, comes with an increased computational cost over that of standard (i.e., nonrobust) training, rendering it impractical for use in large-scale problems. Recent work suggests that a fast approximation to adversarial training shows promise for reducing training time and maintaining robustness in the presence of perturbations bounded by the infinity norm. In this work, we demonstrate that this approach extends to the Euclidean norm and preserves the human-aligned feature representations that are common for robust models. Additionally, we show that using a distributed training scheme can further reduce the time to train robust deep networks. Fast adversarial training is a promising approach that will provide increased security and explainability in machine learning applications for which robust optimization was previously thought to be impractical.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.