Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Near-Optimal Provable Uniform Convergence in Offline Policy Evaluation for Reinforcement Learning (2007.03760v2)

Published 7 Jul 2020 in cs.LG, cs.AI, and stat.ML

Abstract: The problem of Offline Policy Evaluation (OPE) in Reinforcement Learning (RL) is a critical step towards applying RL in real-life applications. Existing work on OPE mostly focus on evaluating a fixed target policy $\pi$, which does not provide useful bounds for offline policy learning as $\pi$ will then be data-dependent. We address this problem by simultaneously evaluating all policies in a policy class $\Pi$ -- uniform convergence in OPE -- and obtain nearly optimal error bounds for a number of global / local policy classes. Our results imply that the model-based planning achieves an optimal episode complexity of $\widetilde{O}(H3/d_m\epsilon2)$ in identifying an $\epsilon$-optimal policy under the time-inhomogeneous episodic MDP model ($H$ is the planning horizon, $d_m$ is a quantity that reflects the exploration of the logging policy $\mu$). To the best of our knowledge, this is the first time the optimal rate is shown to be possible for the offline RL setting and the paper is the first that systematically investigates the uniform convergence in OPE.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.