Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Cascade Submodular Maximization (2007.03592v2)

Published 7 Jul 2020 in cs.LG, cs.AI, and stat.ML

Abstract: In this paper, we propose and study the cascade submodular maximization problem under the adaptive setting. The input of our problem is a set of items, each item is in a particular state (i.e., the marginal contribution of an item) which is drawn from a known probability distribution. However, we can not know its actual state before selecting it. As compared with existing studies on stochastic submodular maximization, one unique setting of our problem is that each item is associated with a continuation probability which represents the probability that one is allowed to continue to select the next item after selecting the current one. Intuitively, this term captures the externality of selecting one item to all its subsequent items in terms of the opportunity of being selected. Therefore, the actual set of items that can be selected by a policy depends on the specific ordering it adopts to select items, this makes our problem fundamentally different from classical submodular set optimization problems. Our objective is to identify the best sequence of selecting items so as to maximize the expected utility of the selected items. We propose a class of stochastic utility functions, \emph{adaptive cascade submodular functions}, and show that the objective functions in many practical application domains satisfy adaptive cascade submodularity. Then we develop a $0.12$ approximation algorithm to the adaptive cascade submodular maximization problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube