Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised CT Metal Artifact Learning using Attention-guided beta-CycleGAN (2007.03480v1)

Published 7 Jul 2020 in eess.IV, cs.CV, cs.LG, eess.SP, and stat.ML

Abstract: Metal artifact reduction (MAR) is one of the most important research topics in computed tomography (CT). With the advance of deep learning technology for image reconstruction,various deep learning methods have been also suggested for metal artifact removal, among which supervised learning methods are most popular. However, matched non-metal and metal image pairs are difficult to obtain in real CT acquisition. Recently, a promising unsupervised learning for MAR was proposed using feature disentanglement, but the resulting network architecture is complication and difficult to handle large size clinical images. To address this, here we propose a much simpler and much effective unsupervised MAR method for CT. The proposed method is based on a novel beta-cycleGAN architecture derived from the optimal transport theory for appropriate feature space disentanglement. Another important contribution is to show that attention mechanism is the key element to effectively remove the metal artifacts. Specifically, by adding the convolutional block attention module (CBAM) layers with a proper disentanglement parameter, experimental results confirm that we can get more improved MAR that preserves the detailed texture of the original image.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.