Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convergence of the CEM-GMsFEM for Stokes flows in heterogeneous perforated domains (2007.03237v1)

Published 7 Jul 2020 in math.NA and cs.NA

Abstract: In this paper, we consider the incompressible Stokes flow problem in a perforated domain and employ the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to solve this problem. The proposed method provides a flexible and systematical approach to construct crucial divergence-free multiscale basis functions for approximating the displacement field. These basis functions are constructed by solving a class of local energy minimization problems over the eigenspaces that contain local information on the heterogeneities. These multiscale basis functions are shown to have the property of exponential decay outside the corresponding local oversampling regions. By adapting the technique of oversampling, the spectral convergence of the method with error bounds related to the coarse mesh size is proved.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.