Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning (2007.03169v1)

Published 7 Jul 2020 in cs.CV

Abstract: We propose spatial semantic embedding network (SSEN), a simple, yet efficient algorithm for 3D instance segmentation using deep metric learning. The raw 3D reconstruction of an indoor environment suffers from occlusions, noise, and is produced without any meaningful distinction between individual entities. For high-level intelligent tasks from a large scale scene, 3D instance segmentation recognizes individual instances of objects. We approach the instance segmentation by simply learning the correct embedding space that maps individual instances of objects into distinct clusters that reflect both spatial and semantic information. Unlike previous approaches that require complex pre-processing or post-processing, our implementation is compact and fast with competitive performance, maintaining scalability on large scenes with high resolution voxels. We demonstrate the state-of-the-art performance of our algorithm in the ScanNet 3D instance segmentation benchmark on AP score.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.