Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Parallel Algorithms for Successive Convolution (2007.03041v2)

Published 6 Jul 2020 in physics.comp-ph, cs.CE, cs.DC, cs.NA, and math.NA

Abstract: In this work, we consider alternative discretizations for PDEs which use expansions involving integral operators to approximate spatial derivatives. These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of $\mathcal{O}(N)$, where $N$ is the number of mesh points along a direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial CFL condition that enforces a nearest-neighbor communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate $> 1\times108$ DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.