Papers
Topics
Authors
Recent
2000 character limit reached

Does imputation matter? Benchmark for predictive models (2007.02837v1)

Published 6 Jul 2020 in stat.ML and cs.LG

Abstract: Incomplete data are common in practical applications. Most predictive machine learning models do not handle missing values so they require some preprocessing. Although many algorithms are used for data imputation, we do not understand the impact of the different methods on the predictive models' performance. This paper is first that systematically evaluates the empirical effectiveness of data imputation algorithms for predictive models. The main contributions are (1) the recommendation of a general method for empirical benchmarking based on real-life classification tasks and the (2) comparative analysis of different imputation methods for a collection of data sets and a collection of ML algorithms.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.