Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Solving Packing Problems with Few Small Items Using Rainbow Matchings (2007.02660v1)

Published 6 Jul 2020 in cs.DS

Abstract: An important area of combinatorial optimization is the study of packing and covering problems, such as Bin Packing, Multiple Knapsack, and Bin Covering. Those problems have been studied extensively from the viewpoint of approximation algorithms, but their parameterized complexity has only been investigated barely. For problem instances containing no "small" items, classical matching algorithms yield optimal solutions in polynomial time. In this paper we approach them by their distance from triviality, measuring the problem complexity by the number $k$ of small items. Our main results are fixed-parameter algorithms for vector versions of Bin Packing, Multiple Knapsack, and Bin Covering parameterized by $k$. The algorithms are randomized with one-sided error and run in time $4{k} \cdot k! \cdot n{O(1)}$. To achieve this, we introduce a colored matching problem to which we reduce all these packing problems. The colored matching problem is natural in itself and we expect it to be useful for other applications. We also present a deterministic fixed-parameter for Bin Packing with run time $(k!){2}\cdot k \cdot 2{k}\cdot n\cdot \log(n)$.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.