Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Misinformation in Query Autocompletions (2007.02620v2)

Published 6 Jul 2020 in cs.IR

Abstract: Query autocompletions help users of search engines to speed up their searches by recommending completions of partially typed queries in a drop down box. These recommended query autocompletions are usually based on large logs of queries that were previously entered by the search engine's users. Therefore, misinformation entered -- either accidentally or purposely to manipulate the search engine -- might end up in the search engine's recommendations, potentially harming organizations, individuals, and groups of people. This paper proposes an alternative approach for generating query autocompletions by extracting anchor texts from a large web crawl, without the need to use query logs. Our evaluation shows that even though query log autocompletions perform better for shorter queries, anchor text autocompletions outperform query log autocompletions for queries of 2 words or more.

Citations (4)

Summary

We haven't generated a summary for this paper yet.