Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the weight and density bounds of polynomial threshold functions (2007.02509v1)

Published 6 Jul 2020 in cs.DM, cs.CC, cs.LG, and math.CO

Abstract: In this report, we show that all n-variable Boolean function can be represented as polynomial threshold functions (PTF) with at most $0.75 \times 2n$ non-zero integer coefficients and give an upper bound on the absolute value of these coefficients. To our knowledge this provides the best known bound on both the PTF density (number of monomials) and weight (sum of the coefficient magnitudes) of general Boolean functions. The special case of Bent functions is also analyzed and shown that any n-variable Bent function can be represented with integer coefficients less than $2n$ while also obeying the aforementioned density bound. Finally, sparse Boolean functions, which are almost constant except for $m << 2n$ number of variable assignments, are shown to have small weight PTFs with density at most $m+2{n-1}$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.