Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval (2007.02503v1)

Published 6 Jul 2020 in cs.CV

Abstract: The rapid growth of user-generated videos on the Internet has intensified the need for text-based video retrieval systems. Traditional methods mainly favor the concept-based paradigm on retrieval with simple queries, which are usually ineffective for complex queries that carry far more complex semantics. Recently, embedding-based paradigm has emerged as a popular approach. It aims to map the queries and videos into a shared embedding space where semantically-similar texts and videos are much closer to each other. Despite its simplicity, it forgoes the exploitation of the syntactic structure of text queries, making it suboptimal to model the complex queries. To facilitate video retrieval with complex queries, we propose a Tree-augmented Cross-modal Encoding method by jointly learning the linguistic structure of queries and the temporal representation of videos. Specifically, given a complex user query, we first recursively compose a latent semantic tree to structurally describe the text query. We then design a tree-augmented query encoder to derive structure-aware query representation and a temporal attentive video encoder to model the temporal characteristics of videos. Finally, both the query and videos are mapped into a joint embedding space for matching and ranking. In this approach, we have a better understanding and modeling of the complex queries, thereby achieving a better video retrieval performance. Extensive experiments on large scale video retrieval benchmark datasets demonstrate the effectiveness of our approach.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.