Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DrugDBEmbed : Semantic Queries on Relational Database using Supervised Column Encodings (2007.02384v1)

Published 5 Jul 2020 in cs.DB

Abstract: Traditional relational databases contain a lot of latent semantic information that have largely remained untapped due to the difficulty involved in automatically extracting such information. Recent works have proposed unsupervised machine learning approaches to extract such hidden information by textifying the database columns and then projecting the text tokens onto a fixed dimensional semantic vector space. However, in certain databases, task-specific class labels may be available, which unsupervised approaches are unable to lever in a principled manner. Also, when embeddings are generated at individual token level, then column encoding of multi-token text column has to be computed by taking the average of the vectors of the tokens present in that column for any given row. Such averaging approach may not produce the best semantic vector representation of the multi-token text column, as observed while encoding paragraphs or documents in natural language processing domain. With these shortcomings in mind, we propose a supervised machine learning approach using a Bi-LSTM based sequence encoder to directly generate column encodings for multi-token text columns of the DrugBank database, which contains gold standard drug-drug interaction (DDI) labels. Our text data driven encoding approach achieves very high Accuracy on the supervised DDI prediction task for some columns and we use those supervised column encodings to simulate and evaluate the Analogy SQL queries on relational data to demonstrate the efficacy of our technique.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.