Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Accuracy-Efficiency Trade-Offs and Accountability in Distributed ML Systems (2007.02203v6)

Published 4 Jul 2020 in cs.CY and cs.LG

Abstract: Trade-offs between accuracy and efficiency pervade law, public health, and other non-computing domains, which have developed policies to guide how to balance the two in conditions of uncertainty. While computer science also commonly studies accuracy-efficiency trade-offs, their policy implications remain poorly examined. Drawing on risk assessment practices in the US, we argue that, since examining these trade-offs has been useful for guiding governance in other domains, we need to similarly reckon with these trade-offs in governing computer systems. We focus our analysis on distributed machine learning systems. Understanding the policy implications in this area is particularly urgent because such systems, which include autonomous vehicles, tend to be high-stakes and safety-critical. We 1) describe how the trade-off takes shape for these systems, 2) highlight gaps between existing US risk assessment standards and what these systems require to be properly assessed, and 3) make specific calls to action to facilitate accountability when hypothetical risks concerning the accuracy-efficiency trade-off become realized as accidents in the real world. We close by discussing how such accountability mechanisms encourage more just, transparent governance aligned with public values.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube