Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accuracy-Efficiency Trade-Offs and Accountability in Distributed ML Systems (2007.02203v6)

Published 4 Jul 2020 in cs.CY and cs.LG

Abstract: Trade-offs between accuracy and efficiency pervade law, public health, and other non-computing domains, which have developed policies to guide how to balance the two in conditions of uncertainty. While computer science also commonly studies accuracy-efficiency trade-offs, their policy implications remain poorly examined. Drawing on risk assessment practices in the US, we argue that, since examining these trade-offs has been useful for guiding governance in other domains, we need to similarly reckon with these trade-offs in governing computer systems. We focus our analysis on distributed machine learning systems. Understanding the policy implications in this area is particularly urgent because such systems, which include autonomous vehicles, tend to be high-stakes and safety-critical. We 1) describe how the trade-off takes shape for these systems, 2) highlight gaps between existing US risk assessment standards and what these systems require to be properly assessed, and 3) make specific calls to action to facilitate accountability when hypothetical risks concerning the accuracy-efficiency trade-off become realized as accidents in the real world. We close by discussing how such accountability mechanisms encourage more just, transparent governance aligned with public values.

Citations (15)

Summary

We haven't generated a summary for this paper yet.