Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On spectral algorithms for community detection in stochastic blockmodel graphs with vertex covariates (2007.02156v3)

Published 4 Jul 2020 in cs.SI, cs.LG, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: In network inference applications, it is often desirable to detect community structure, namely to cluster vertices into groups, or blocks, according to some measure of similarity. Beyond mere adjacency matrices, many real networks also involve vertex covariates that carry key information about underlying block structure in graphs. To assess the effects of such covariates on block recovery, we present a comparative analysis of two model-based spectral algorithms for clustering vertices in stochastic blockmodel graphs with vertex covariates. The first algorithm uses only the adjacency matrix, and directly estimates the block assignments. The second algorithm incorporates both the adjacency matrix and the vertex covariates into the estimation of block assignments, and moreover quantifies the explicit impact of the vertex covariates on the resulting estimate of the block assignments. We employ Chernoff information to analytically compare the algorithms' performance and derive the information-theoretic Chernoff ratio for certain models of interest. Analytic results and simulations suggest that the second algorithm is often preferred: we can often better estimate the induced block assignments by first estimating the effect of vertex covariates. In addition, real data examples also indicate that the second algorithm has the advantages of revealing underlying block structure and taking observed vertex heterogeneity into account in real applications. Our findings emphasize the importance of distinguishing between observed and unobserved factors that can affect block structure in graphs.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.