Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Class Orderings for Incremental Learning (2007.02145v2)

Published 4 Jul 2020 in cs.CV

Abstract: The influence of class orderings in the evaluation of incremental learning has received very little attention. In this paper, we investigate the impact of class orderings for incrementally learned classifiers. We propose a method to compute various orderings for a dataset. The orderings are derived by simulated annealing optimization from the confusion matrix and reflect different incremental learning scenarios, including maximally and minimally confusing tasks. We evaluate a wide range of state-of-the-art incremental learning methods on the proposed orderings. Results show that orderings can have a significant impact on performance and the ranking of the methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.