Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 72 tok/s
Gemini 3.0 Pro 51 tok/s Pro
Gemini 2.5 Flash 147 tok/s Pro
Kimi K2 185 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Off-Policy Exploitability-Evaluation in Two-Player Zero-Sum Markov Games (2007.02141v2)

Published 4 Jul 2020 in cs.LG, cs.GT, econ.EM, and stat.ML

Abstract: Off-policy evaluation (OPE) is the problem of evaluating new policies using historical data obtained from a different policy. In the recent OPE context, most studies have focused on single-player cases, and not on multi-player cases. In this study, we propose OPE estimators constructed by the doubly robust and double reinforcement learning estimators in two-player zero-sum Markov games. The proposed estimators project exploitability that is often used as a metric for determining how close a policy profile (i.e., a tuple of policies) is to a Nash equilibrium in two-player zero-sum games. We prove the exploitability estimation error bounds for the proposed estimators. We then propose the methods to find the best candidate policy profile by selecting the policy profile that minimizes the estimated exploitability from a given policy profile class. We prove the regret bounds of the policy profiles selected by our methods. Finally, we demonstrate the effectiveness and performance of the proposed estimators through experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.