Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Text Data Augmentation: Towards better detection of spear-phishing emails (2007.02033v2)

Published 4 Jul 2020 in cs.CL, cs.IR, and cs.LG

Abstract: Text data augmentation, i.e., the creation of new textual data from an existing text, is challenging. Indeed, augmentation transformations should take into account language complexity while being relevant to the target NLP task (e.g., Machine Translation, Text Classification). Initially motivated by an application of Business Email Compromise (BEC) detection, we propose a corpus and task agnostic augmentation framework used as a service to augment English texts within our company. Our proposal combines different methods, utilizing BERT LLM, multi-step back-translation and heuristics. We show that our augmentation framework improves performances on several text classification tasks using publicly available models and corpora as well as on a BEC detection task. We also provide a comprehensive argumentation about the limitations of our augmentation framework.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.