Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generating Informative Dialogue Responses with Keywords-Guided Networks (2007.01652v1)

Published 3 Jul 2020 in cs.CL

Abstract: Recently, open-domain dialogue systems have attracted growing attention. Most of them use the sequence-to-sequence (Seq2Seq) architecture to generate responses. However, traditional Seq2Seq-based open-domain dialogue models tend to generate generic and safe responses, which are less informative, unlike human responses. In this paper, we propose a simple but effective keywords-guided Sequence-to-Sequence model (KW-Seq2Seq) which uses keywords information as guidance to generate open-domain dialogue responses. Specifically, KW-Seq2Seq first uses a keywords decoder to predict some topic keywords, and then generates the final response under the guidance of them. Extensive experiments demonstrate that the KW-Seq2Seq model produces more informative, coherent and fluent responses, yielding substantive gain in both automatic and human evaluation metrics.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.