Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Finding Densest $k$-Connected Subgraphs (2007.01533v1)

Published 3 Jul 2020 in cs.DS, cs.DM, and cs.SI

Abstract: Dense subgraph discovery is an important graph-mining primitive with a variety of real-world applications. One of the most well-studied optimization problems for dense subgraph discovery is the densest subgraph problem, where given an edge-weighted undirected graph $G=(V,E,w)$, we are asked to find $S\subseteq V$ that maximizes the density $d(S)$, i.e., half the weighted average degree of the induced subgraph $G[S]$. This problem can be solved exactly in polynomial time and well-approximately in almost linear time. However, a densest subgraph has a structural drawback, namely, the subgraph may not be robust to vertex/edge failure. Indeed, a densest subgraph may not be well-connected, which implies that the subgraph may be disconnected by removing only a few vertices/edges within it. In this paper, we provide an algorithmic framework to find a dense subgraph that is well-connected in terms of vertex/edge connectivity. Specifically, we introduce the following problems: given a graph $G=(V,E,w)$ and a positive integer/real $k$, we are asked to find $S\subseteq V$ that maximizes the density $d(S)$ under the constraint that $G[S]$ is $k$-vertex/edge-connected. For both problems, we propose polynomial-time (bicriteria and ordinary) approximation algorithms, using classic Mader's theorem in graph theory and its extensions.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.