Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Relation between Quality-Diversity Evaluation and Distribution-Fitting Goal in Text Generation (2007.01488v2)

Published 3 Jul 2020 in cs.LG, cs.CL, and stat.ML

Abstract: The goal of text generation models is to fit the underlying real probability distribution of text. For performance evaluation, quality and diversity metrics are usually applied. However, it is still not clear to what extend can the quality-diversity evaluation reflect the distribution-fitting goal. In this paper, we try to reveal such relation in a theoretical approach. We prove that under certain conditions, a linear combination of quality and diversity constitutes a divergence metric between the generated distribution and the real distribution. We also show that the commonly used BLEU/Self-BLEU metric pair fails to match any divergence metric, thus propose CR/NRR as a substitute for quality/diversity metric pair.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.