Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Text-based Emotion Aware Recommender (2007.01455v2)

Published 3 Jul 2020 in cs.IR

Abstract: We apply the concept of users' emotion vectors (UVECs) and movies' emotion vectors (MVECs) as building components of Emotion Aware Recommender System. We built a comparative platform that consists of five recommenders based on content-based and collaborative filtering algorithms. We employed a Tweets Affective Classifier to classify movies' emotion profiles through movie overviews. We construct MVECs from the movie emotion profiles. We track users' movie watching history to formulate UVECs by taking the average of all the MVECs from all the movies a user has watched. With the MVECs, we built an Emotion Aware Recommender as one of the comparative platforms' algorithms. We evaluated the top-N recommendation lists generated by these Recommenders and found the top-N list of Emotion Aware Recommender showed serendipity recommendations.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.