Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems (2007.01219v2)

Published 2 Jul 2020 in eess.SP and cs.LG

Abstract: Stochastic gradient descent is a canonical tool for addressing stochastic optimization problems, and forms the bedrock of modern machine learning and statistics. In this work, we seek to balance the fact that attenuating step-size is required for exact asymptotic convergence with the fact that constant step-size learns faster in finite time up to an error. To do so, rather than fixing the mini-batch and the step-size at the outset, we propose a strategy to allow parameters to evolve adaptively. Specifically, the batch-size is set to be a piecewise-constant increasing sequence where the increase occurs when a suitable error criterion is satisfied. Moreover, the step-size is selected as that which yields the fastest convergence. The overall algorithm, two scale adaptive (TSA) scheme, is developed for both convex and non-convex stochastic optimization problems. It inherits the exact asymptotic convergence of stochastic gradient method. More importantly, the optimal error decreasing rate is achieved theoretically, as well as an overall reduction in computational cost. Experimentally, we observe that TSA attains a favorable tradeoff relative to standard SGD that fixes the mini-batch and the step-size, or simply allowing one to increase or decrease respectively.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.