Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Digit Image Recognition Using an Ensemble of One-Versus-All Deep Network Classifiers (2007.01192v2)

Published 28 Jun 2020 in cs.CV, cs.LG, cs.NE, and eess.IV

Abstract: In multiclass deep network classifiers, the burden of classifying samples of different classes is put on a single classifier. As the result the optimum classification accuracy is not obtained. Also training times are large due to running the CNN training on single CPU/GPU. However it is known that using ensembles of classifiers increases the performance. Also, the training times can be reduced by running each member of the ensemble on a separate processor. Ensemble learning has been used in the past for traditional methods to a varying extent and is a hot topic. With the advent of deep learning, ensemble learning has been applied to the former as well. However, an area which is unexplored and has potential is One-Versus-All (OVA) deep ensemble learning. In this paper we explore it and show that by using OVA ensembles of deep networks, improvements in performance of deep networks can be obtained. As shown in this paper, the classification capability of deep networks can be further increased by using an ensemble of binary classification (OVA) deep networks. We implement a novel technique for the case of digit image recognition and test and evaluate it on the same. In the proposed approach, a single OVA deep network classifier is dedicated to each category. Subsequently, OVA deep network ensembles have been investigated. Every network in an ensemble has been trained by an OVA training technique using the Stochastic Gradient Descent with Momentum Algorithm (SGDMA). For classification of a test sample, the sample is presented to each network in the ensemble. After prediction score voting, the network with the largest score is assumed to have classified the sample. The experimentation has been done on the MNIST digit dataset, the USPS+ digit dataset, and MATLAB digit image dataset. Our proposed technique outperforms the baseline on digit image recognition for all datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube