Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automated Empathy Detection for Oncology Encounters (2007.00809v1)

Published 1 Jul 2020 in eess.AS and cs.SD

Abstract: Empathy involves understanding other people's situation, perspective, and feelings. In clinical interactions, it helps clinicians establish rapport with a patient and support patient-centered care and decision making. Understanding physician communication through observation of audio-recorded encounters is largely carried out with manual annotation and analysis. However, manual annotation has a prohibitively high cost. In this paper, a multimodal system is proposed for the first time to automatically detect empathic interactions in recordings of real-world face-to-face oncology encounters that might accelerate manual processes. An automatic speech and language processing pipeline is employed to segment and diarize the audio as well as for transcription of speech into text. Lexical and acoustic features are derived to help detect both empathic opportunities offered by the patient, and the expressed empathy by the oncologist. We make the empathy predictions using Support Vector Machines (SVMs) and evaluate the performance on different combinations of features in terms of average precision (AP).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.