Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Age-Oriented Face Synthesis with Conditional Discriminator Pool and Adversarial Triplet Loss (2007.00792v2)

Published 1 Jul 2020 in cs.CV

Abstract: The vanilla Generative Adversarial Networks (GAN) are commonly used to generate realistic images depicting aged and rejuvenated faces. However, the performance of such vanilla GANs in the age-oriented face synthesis task is often compromised by the mode collapse issue, which may result in the generation of faces with minimal variations and a poor synthesis accuracy. In addition, recent age-oriented face synthesis methods use the L1 or L2 constraint to preserve the identity information on synthesized faces, which implicitly limits the identity permanence capabilities when these constraints are associated with a trivial weighting factor. In this paper, we propose a method for the age-oriented face synthesis task that achieves a high synthesis accuracy with strong identity permanence capabilities. Specifically, to achieve a high synthesis accuracy, our method tackles the mode collapse issue with a novel Conditional Discriminator Pool (CDP), which consists of multiple discriminators, each targeting one particular age category. To achieve strong identity permanence capabilities, our method uses a novel Adversarial Triplet loss. This loss, which is based on the Triplet loss, adds a ranking operation to further pull the positive embedding towards the anchor embedding resulting in significantly reduced intra-class variances in the feature space. Through extensive experiments, we show that our proposed method outperforms state-of-the-art methods in terms of synthesis accuracy and identity permanence capabilities, qualitatively and quantitatively.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube