Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Second Order Accurate Hierarchical Approximate Factorization of Sparse SPD Matrices (2007.00789v3)

Published 1 Jul 2020 in math.NA and cs.NA

Abstract: We describe a second-order accurate approach to sparsifying the off-diagonal blocks in the hierarchical approximate factorizations of sparse symmetric positive definite matrices. The norm of the error made by the new approach depends quadratically, not linearly, on the error in the low-rank approximation of the given block. The analysis of the resulting two-level preconditioner shows that the preconditioner is second-order accurate as well. We incorporate the new approach into the recent Sparsified Nested Dissection algorithm [SIAM J. Matrix Anal. Appl., 41 (2020), pp. 715-746], and test it on a wide range of problems. The new approach halves the number of Conjugate Gradient iterations needed for convergence, with almost the same factorization complexity, improving the total runtimes of the algorithm. Our approach can be incorporated into other rank-structured methods for solving sparse linear systems.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube