Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A non-iterative domain decomposition method for the interaction between a fluid and a thick structure (2007.00781v1)

Published 1 Jul 2020 in math.NA and cs.NA

Abstract: This work focuses on the development and analysis of a partitioned numerical method for moving domain, fluid-structure interaction problems. We model the fluid using incompressible Navier-Stokes equations, and the structure using linear elasticity equations. We assume that the structure is thick, i.e., described in the same dimension as the fluid. We propose a non-iterative, domain decomposition method where the fluid and the structure sub-problems are solved separately. The method is based on generalized Robin boundary conditions, which are used in both fluid and structure sub-problems. Using energy estimates, we show that the proposed method applied to a moving domain problem is unconditionally stable. We also analyze the convergence of the method and show $\mathcal{O}(\Delta t\frac12)$ convergence in time and optimal convergence in space. Numerical examples are used to demonstrate the performance of the method. In particular, we explore the relation between the combination parameter used in the derivation of the generalized Robin boundary conditions and the accuracy of the scheme. We also compare the performance of the method to a monolithic solver.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.