Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Multi-spectral Dataset for Evaluating Motion Estimation Systems (2007.00622v2)

Published 1 Jul 2020 in cs.CV and cs.RO

Abstract: Visible images have been widely used for motion estimation. Thermal images, in contrast, are more challenging to be used in motion estimation since they typically have lower resolution, less texture, and more noise. In this paper, a novel dataset for evaluating the performance of multi-spectral motion estimation systems is presented. All the sequences are recorded from a handheld multi-spectral device. It consists of a standard visible-light camera, a long-wave infrared camera, an RGB-D camera, and an inertial measurement unit (IMU). The multi-spectral images, including both color and thermal images in full sensor resolution (640 x 480), are obtained from a standard and a long-wave infrared camera at 32Hz with hardware-synchronization. The depth images are captured by a Microsoft Kinect2 and can have benefits for learning cross-modalities stereo matching. For trajectory evaluation, accurate ground-truth camera poses obtained from a motion capture system are provided. In addition to the sequences with bright illumination, the dataset also contains dim, varying, and complex illumination scenes. The full dataset, including raw data and calibration data with detailed data format specifications, is publicly available.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.