Emergent Mind

Convex Regularization in Monte-Carlo Tree Search

(2007.00391)
Published Jul 1, 2020 in cs.LG and cs.AI

Abstract

Monte-Carlo planning and Reinforcement Learning (RL) are essential to sequential decision making. The recent AlphaGo and AlphaZero algorithms have shown how to successfully combine these two paradigms in order to solve large scale sequential decision problems. These methodologies exploit a variant of the well-known UCT algorithm to trade off exploitation of good actions and exploration of unvisited states, but their empirical success comes at the cost of poor sample-efficiency and high computation time. In this paper, we overcome these limitations by considering convex regularization in Monte-Carlo Tree Search (MCTS), which has been successfully used in RL to efficiently drive exploration. First, we introduce a unifying theory on the use of generic convex regularizers in MCTS, deriving the regret analysis and providing guarantees of exponential convergence rate. Second, we exploit our theoretical framework to introduce novel regularized backup operators for MCTS, based on the relative entropy of the policy update, and on the Tsallis entropy of the policy. Finally, we empirically evaluate the proposed operators in AlphaGo and AlphaZero on problems of increasing dimensionality and branching factor, from a toy problem to several Atari games, showing their superiority w.r.t. representative baselines.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.