Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Developing cooperative policies for multi-stage tasks (2007.00203v1)

Published 1 Jul 2020 in cs.LG and stat.ML

Abstract: This paper proposes the Cooperative Soft Actor Critic (CSAC) method of enabling consecutive reinforcement learning agents to cooperatively solve a long time horizon multi-stage task. This method is achieved by modifying the policy of each agent to maximise both the current and next agent's critic. Cooperatively maximising each agent's critic allows each agent to take actions that are beneficial for its task as well as subsequent tasks. Using this method in a multi-room maze domain, the cooperative policies were able to outperform both uncooperative policies as well as a single agent trained across the entire domain. CSAC achieved a success rate of at least 20\% higher than the uncooperative policies, and converged on a solution at least 4 times faster than the single agent.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jordan Erskine (2 papers)
  2. Chris Lehnert (14 papers)

Summary

We haven't generated a summary for this paper yet.