Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Multi-Agent Task Assignment in Failure-Prone and Adversarial Environments (2007.00100v1)

Published 30 Jun 2020 in cs.RO and cs.MA

Abstract: The problem of assigning agents to tasks is a central computational challenge in many multi-agent autonomous systems. However, in the real world, agents are not always perfect and may fail due to a number of reasons. A motivating application is where the agents are robots that operate in the physical world and are susceptible to failures. This paper studies the problem of Robust Multi-Agent Task Assignment, which seeks to find an assignment that maximizes overall system performance while accounting for potential failures of the agents. We investigate both, stochastic and adversarial failures under this framework. For both cases, we present efficient algorithms that yield optimal or near-optimal results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.