Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Reinforcement Learning Approach for Dynamic Information Flow Tracking Games for Detecting Advanced Persistent Threats (2007.00076v2)

Published 30 Jun 2020 in math.OC and cs.GT

Abstract: Advanced Persistent Threats (APTs) are stealthy attacks that threaten the security and privacy of sensitive information. Interactions of APTs with victim system introduce information flows that are recorded in the system logs. Dynamic Information Flow Tracking (DIFT) is a promising detection mechanism for detecting APTs. DIFT taints information flows originating at system entities that are susceptible to an attack, tracks the propagation of the tainted flows, and authenticates the tainted flows at certain system components according to a pre-defined security policy. Deployment of DIFT to defend against APTs in cyber systems is limited by the heavy resource and performance overhead associated with DIFT. In this paper, we propose a resource-efficient model for DIFT by incorporating the security costs, false-positives, and false-negatives associated with DIFT. Specifically, we develop a game-theoretic framework and provide an analytical model of DIFT that enables the study of trade-off between resource efficiency and the effectiveness of detection. Our game model is a nonzero-sum, infinite-horizon, average reward stochastic game. Our model incorporates the information asymmetry between players that arises from DIFT's inability to distinguish malicious flows from benign flows and APT's inability to know the locations where DIFT performs a security analysis. Additionally, the game has incomplete information as the transition probabilities (false-positive and false-negative rates) are unknown. We propose a multiple-time scale stochastic approximation algorithm to learn an equilibrium solution of the game. We prove that our algorithm converges to an average reward Nash equilibrium. We evaluate our proposed model and algorithm on a real-world ransomware dataset and validate the effectiveness of the proposed approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube